RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

INVESTIGATION OF MEDIUM ENTROPY ALLOYS OBTAINED BY ELECTRIC ARC WELDING WITH POWDER WIRES

PII
10.31857/S0235010625040082-1
DOI
10.31857/S0235010625040082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
365-378
Abstract
In modern conditions of intensive technology development and constantly increasing requirements for materials in industry, there is an urgent need to develop fundamentally new metal alloys with special performance properties. Classical materials, including various grades of steels, aluminum and titanium alloys, in many cases no longer meet modern standards in such key parameters as strength, wear resistance, corrosion and thermal stability. In this context, multicomponent alloys with an increased entropy component containing five or more basic elements in close atomic ratios are of particular importance. Due to the unique effect of high configuration entropy, these materials have a number of outstanding physico-chemical characteristics: increased mechanical strength, exceptional resistance to oxidation at high temperatures, as well as excellent wear resistance. However, significant technological difficulties in obtaining high-entropy alloys, combined with the high cost of the initial components necessary to create equal-atomic compositions, have led to increased scientific interest in the study of alloys with an average entropy level (SES), which represent a more affordable alternative. This paper considers the development and investigation of a multicomponent alloy of the Cr-Ni-Co-Fe-Mo system, obtained by electric arc welding using specialized powder wire. The main attention is paid to the study of microstructural features, the distribution of microhardness, and the determination of nonmetallic inclusions in the deposited layer. The choice of this system of elements is due to their complementary properties: chromium (Cr) provides increased corrosion resistance, nickel (Ni) improves ductility and heat resistance, cobalt (Co) increases heat resistance, iron (Fe) serves as the base of the alloy, and molybdenum (Mo) promotes hardening at high temperatures. The combination of these elements makes it possible to obtain a material with a unique balance of characteristics, which makes it promising for use in the aerospace industry, energy, oil and gas industry and other high-tech fields. In the course of the study, comprehensive tests were carried out, including metallographic analysis and microhardness measurements using the Vickers method. Special attention is paid to the identification and classification of non-metallic inclusions, since their presence can significantly affect the operational properties of the material. The results obtained allow us to draw conclusions about the prospects for further study and optimization of this class of alloys for industrial implementation.
Keywords
наплавка порошковая проволока сварочный флюс твердые сплавы микротвердость неметаллические включения микроструктура
Date of publication
01.07.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Мацинов С.А., Калиниченко В.А., Андрушевич А.А. Перспективы применения покрытий для улучшения поверхностных свойств литых композиционных материалов // Литве и металлургия. 2024. № 2. С. 63–71.
  2. 2. Дресвянников А.Ф., Колпаков М.Е., Ермолаева Е.А. Физикохимия высокоэнтропийных сплавов: теория и практические приложения // Вестник технологического университета. 2023. № 10. С. 5–19.
  3. 3. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Materials Science and Engineering: A. 2004. 375–377. P. 213–218.
  4. 4. Yeh Jien-Wei, Lin Su-Jien, Chin Tsung-Shune, Gan JonYiew, Chen Swe-Kai, Shun Tao-Tsung, Tsau Chung Huei, Chou Shou-Yi. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipl metallic elements // Metallurgical and Materials Transactions A. 2004. 35. P. 2533–2536.
  5. 5. Zhang Yong, Zuo Ting Ting, Tang Zhi, Gao M.C., Dahmen K.A., Liaw P.K., Lu Zhao Ping. Microstructures and properties of high-entropy alloys // Progress in Materials Science. 2014. 61. P. 1–93.
  6. 6. Butler T.M., Weaver M.L. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys // Metals. 2016. 6. № 9. 222.
  7. 7. Daoud H.M., Manzoni A.M., Völkl R., Wanderka N., Glatzel U. Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air // Advanced Engineering Materials. 2015. 17. № 8. Р. 1134–1141.
  8. 8. Батаева З.Б., Руктуев А.А., Иванов И.В. и др. Обзор исследований сплавов, разработанных на основе энтропийного подхода // Обработка металлов (технология, оборудование, инструменты). 2021. 23, № 2. С. 116–146.
  9. 9. Степченков А.К., Макаров А.В., Волкова Е.Г. и др. Влияние добавок карбида и борида вольфрама на структуру и микротвердость эквиатомного CrFeNi-покрытия, сформированного короткомпульсной лазерной наплавкой // Frontier Materials & Technologies. 2024. № 1. С. 83–94.
  10. 10. Степанюк Н.А. Влияние облучения ионами гелия на фазовый состав и микроструктуру поверхности высокоэнтропийного сплава CoCrFeMnNi / В сборнике: 78-я научная конференция студентов и аспирантов Белорусского государственного университета. Материалы конференции. В 3-х частях. Минск. 2021. С. 149–152.
  11. 11. Arif Z.U., Khalid M.Y., Rashid A.A., Rehman E.U., Atif M. Laser deposition of high-entropy alloys: A comprehensive review // Optics & Laser Technology. 2022. 145. 107447.
  12. 12. Хрущов М.М. Износостойкость и структура твердых наплавок. М.: Машиностроение. 1971.
  13. 13. Сидоров А.И. Восстановление деталей машин напылением и наплавкой. М.: Машиностроение. 1987.
  14. 14. C. Wang, K.F. Lin, Y.L. Zhao, T. Yang, T.L. Zhang, W.H. Liu, C.H. Hsueh, H.C. Lin, J.J. Kai, C.T. Liu. Martensitic transformation and mechanical behavior of a medium-entropy alloy // Materials Science and Engineering A. 2020. 786. 139371.
  15. 15. C.Zhao, W.Xiaoli, W.Weili, L.Xin, Y.Haiou, J.Ze, C.Lianyang, W.Haibin, L.Wenhui, L.Nan. Engineering fine grains, dislocations and precipitates for enhancing the strength of TiB2-modified CoCrFeMnNi high-entropy alloy using Laser Powder Bed Fusion // Journal of Materials Research and Technology. 2023. 26. Р. 1198–1213.
  16. 16. He Junyang, Makineni S.K., Lu Wenjun, Shang Yuanyuan, Lu Zhaoping, Li Zhiming, Gault B. On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy // Scripta Materialia. 2020. 175. Р. 1–6.
  17. 17. Ren Mengfei, Li Ruifen, Zhang Xiaoqiang, Gu Jiayang, Jiao Chen. Effect of WC particles preparation method on microstructure and properties of laser cladded Ni60-WC coatings // Journal of Materials Research and Technology. 2023. 22. Р. 605–616.
  18. 18. Dash T., Nayak B.B. Preparation of multi-phase composite of tungsten carbide, tungsten boride and carbon by arc plasma melting: characterization of melt-cast product // Ceramics International. 2016. 42. № 1-A. Р. 445–459.
  19. 19. Гусева Т.П., Громов В.Е., Гостевская А.Н. и др. Структура и свойства наплавки новой быстрорежущей стали P2M9 // Актуальные проблемы прочности: Материалы LVVIII международной научной конференции. Витебск, 27–31 мая 2024 года. Минск: ИВЦ Минфина. 2024. С. 5.
  20. 20. Ерофеев В.К., Воробьева Г.А. Исследование влияния аэротермоакустической обработки на структуру инструментальных быстрорежущих сталей и сплавов // Металлообработка. 2009. № 6 (54). С. 34–40.
  21. 21. Чапайкин А.С., Громов В.Е., Черепанова Г.И., Миненко С.С. Исследование свойств и структуры наплавки быстрорежущей сталей после высокотемпературного отпуска и ЭПО // Наука и молодежь: проблемы, поиски, решения: Труды Всероссийской научной конференции студентов, аспирантов и молодых ученых. Новокузнецк, 15–16 мая 2024 года. Новокузнецк: Сибирский государственный индустриальный университет. 2024. С. 24–27.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library