RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Quasi-equilibrium and nonequilibrium explosive crystallization of InBi and In2Bi compounds

PII
S0235010625010012-1
DOI
10.31857/S0235010625010012
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
3-9
Abstract
The process of quasi-equilibrium and nonequilibrium explosive crystallizations of chemical compounds InBi and In2Bi, as well as their components bismuth and indium, has been studied using cyclic thermal analysis (CTA) and differential thermal analysis (DTA). The experiments were carried out under the same conditions. It has been established that the chemical compound In2Bi behaves like indium during crystallization, i.e., regardless of the preliminary overheating and the time of isothermal exposure of the melt to four hours, it crystallizes quasi-equilibriously with a slight pre-crystallization overcooling of 1.5-2 K. And the chemical compound InBi behaves like bismuth during crystallization. The temperature of critical overheating of the melt has been found, upon cooling from which crystallization has a quasi-equilibrium character (PK), and upon cooling from temperatures above, crystallization has an explosive character from the supercooled state, i.e., the dependence of melt overheating on overcooling is abrupt. The experimental results are interpreted from the point of view of the cluster-coagulation model of melt crystallization.
Keywords
циклический термический анализ дифференциальный термический анализ равновесная и неравновесная кристаллизация висмут индий химические соединения
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Александров В.Д. Кинетика зародышеобразования и массовой кристаллизации переохлажденных расплавов и аморфных сред. Донецк: Донбасс. 2011.
  2. 2. Свойства элементов. Справочник / Под ред. М.Е. Дрица. М.: Мет.1985.
  3. 3. Тонков Е.Ю. Фазовые превращения соединений при высоком давлении. Справочник. М.: Металлургия. 1988. Т.1–2.
  4. 4. Perepechko J.Y. Nucleation in undercooled liquids // Mater Sci. and Eng. 1984. 65. № 1. P. 125–135.
  5. 5. Abyzov A.S., Schmelzer J.W., Fokin V.M., Zanotto E.D. Crystallization of supercooled liquids: Self-consistency correction of the steady-state nucleation rate // Entropy. 2020. 22. № 5. P. 558.
  6. 6. Норман Г.Э., Флейта Д.Ю. Коллективные движения атомов в перегретом кристалле и переохлажденном расплаве простого металла // Письма в Журнал экспериментальной и теоретической физики. 2020. 111. №. 4. С. 251–256.
  7. 7. Fleita D.Y., Norman G.E., Pisarev V.V. Study of phase transition in the pure metal melt during ultrafast cooling by method of higher-order correlation functions // Journal of Physics: Conference Series. IOP Publishing. 2018. 946. №. 1. С. 012102.
  8. 8. Tourret D., Gandin Ch.-A., Volkmann T., Herlach D.M. Multiple non-equilibrium phase transformations: Modeling versus electro-magnetic levitation experiment. // ActaMaterialia. 2011. № 59. P. 4665–4677.
  9. 9. Herlach D.M., Lengsdorf R., Reutzel S., Galenko P., Hartmann H., Gandin C.A., Mosbah S., Garcia-Escorial A., Henein H. Non-Equilibrium Solidification, Modeling for Microstructure Engineering of Industrial Alloys (NEQUISOL). // Journal of the Japan Society of Microgravity Application. 2008. № 25(3). P. 437–442.
  10. 10. Ладьянов В.И., Стяжкина И.В., Камаева Л.В. Влияние температуры расплава на кристаллизацию и свойства сплава Fe+10ат.% Si // Перспективные материалы. 2010. С. 251–254.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library