RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Selection of the optimal composition of AlTiZrVNb coating using CALPHAD approaches

PII
S0235010625020067-1
DOI
10.31857/S0235010625020067
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
152-160
Abstract
With the development of scientific and technological progress, the requirements for reliability (increased service life) of components and structural parts have changed. Machine components made from high‒carbon manganese steel are subject to wear, which can lead to increased costs. It is widely known that structures consisting of steel 76, GOST 51045‒97 are significantly wearing out. By modifying the surface layer using laser surfacing and subsequent melting, it becomes possible, through active mixing and rapid solidification that occurs during melting, not only to homogenize the structure, but also to implement hardening processes of the near‒surface layers of the most loaded (vulnerable) zones. Using the CALPHAD methods in the TermoCalc software package (software version number 2024.1.132110‒55), the effect of the applied protective coating (AlTiZrVNb) with subsequent melting on the change in the phase composition and distribution of elements on the outer crystalline layer of the substrate was simulated. An alloy of the composition Al31.17Ti18.55Zr1.56V27.53Nb21.19 was selected for the calculations. When laser radiation is applied to the deposited coating, active interaction of the coating components with the base metal (iron) is observed, resulting in the formation of a modified top layer containing new phases with iron in the composition. In this regard, using mathematical modeling, the Scheil method determined the crystallization rates and phases formed upon cooling in alloys located in the upper structure of the path after the reflow process: Al31.17Ti18.55Zr1.56V27.53Nb21.19, Al29.61Ti17.62Zr1.48V26.15Nb20.13Fe5.00, Al28.05Ti16.70Zr1.40V24.78Nb19.07Fe10.00, Al26.49Ti15.77Zr1.33V23.40Nb18.01Fe15.00, Al24.94Ti14.84Zr1.25V22.02Nb16.95Fe20.00, Al23.38Ti13.91Zr1.17V20.65Nb15.89Fe25.00, Al21.82Ti12.99Zr1.09V19.27Nb14.83Fe30.00, Al20.26Ti12.06Zr1.01V17.89Nb13.77Fe35.00, Al18.70Ti11.13Zr0.94V16.52Nb12.71Fe40.00, Al15.59Ti9.28Zr0.78V13.77Nb10.60Fe50.00, Al12.47Ti7.42Zr0.62V11.01Nb8.48Fe60.00. The crystallization process from 1600 to 500 °С of the obtained compositions is described using computational methods. When studying the solidification process, it was determined for all compositions that the iron content in the coating is about 10–25 at.% favorable for the formation of a good‒quality coating, since at these concentrations the material is in a single‒phase region.
Keywords
лазерная наплавка CALPHAD TermoCalc лазерное оплавление поверхности AlTiZrVNbFe
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Ranjan R. Protection from corrosion and wear by different weld cladding techniques / Ranjan R., Das A.K // Materials Today: Proceedings. 2022. 57 (4). P. 1687–1693.
  2. 2. Олейник К.И., Бахтеев И.С., Русских А.С., Осинкина Т.В., Жилина Е.М. Наплавление многокомпонентных сплавов, содержащих тугоплавкие металлы // Расплавы. 2024. №1. С. 90–100.
  3. 3. Jindal, Chamkaur & Sidhu, Buta & Kumar, Pardeep & Sidhu, Hazoor. Performance of hardfaced/heat treated materials under solid particle erosion: A systematic literature review // Materials Today: Proceedings. 2022. 50. №5. 2022. P. 629–639.
  4. 4. Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. Теоретические основы лазерной обработки: монография / ред. Григорьянц А.Г. М.: Изд‒во МГТУ им. Н. Э. Баумана. 2022.
  5. 5. Девойно О.Г., Туричин Г.А., Кардаполова М.А., Касач Ю.И., Погудо Е.В., Косякова И.М. Триботехнические характеристики композиционных покрытий на никелевой основе, полученных гибридными технологиями // Наука и техника. 2023. 22. №6. 450–459.
  6. 6. Devoino O.G., Kardapolova M.A., Kalinichenko A.S., Zharskii V.V., Vasilenko A.G. Technology of Forming Wear‒Resistant Coatings on an Iron Base by Laser Treatment Methods (BNTU, Minsk, 2020).
  7. 7. Yousub L., Nordin M., Sudarsanam B., Farson D. Influence of Fluid Convection on Weld Pool Formation in Laser Cladding // Welding journal. 2014. 93. P. 292‒300.
  8. 8. Бахтеев И. С., Олейник К. И., Литвинюк К.С., Фурман Е. Л., Валиев Р. М. Подбор оптимального состава плазменного покрытия системы Ni‒B‒Si методом CALPHAD воздушных доменных фурм // Расплавы. 2025. № 2 (в печати).
  9. 9. Yongfei J., Li J., Jiang Y.Q., Jia W.L., Lu, Z.J. Modified criterions for phase prediction in the multi‒component laser‒clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser‒clad coatings // Applied Surface Science. 2019. 465. P. 700–714.
  10. 10. Zhilina E.M., Russkikh A.S., Krasikov S.A. et al. Synthesis of high‒entropy alloy AlTiZrVNb by aluminothermic reaction // Russian Journal of Inorganic Chemistry. 2022. 67. № 6. P. 888–891.
  11. 11. Balakirev V.F., Osinkina T.V., Krasikov S.A. et al. Joint metallothermic reduction of titanium and rare refractory metals of group V // Russian Journal of Non‒Ferrous Metals. 2021. 62. № 2. P. 190–196.
  12. 12. Карфидов Э. А., Никитина Е. В., Русанов Б. А. Коррозионное поведение высокоэнтропийного сплава AlNiCoCuZr эквиатомного состава в растворе NaCl. // Расплавы. 2024. № 1. С. 82–89.
  13. 13. Николаенко А.А., Третьяк П.А., Быстров А.В. Повреждения и отказы рельсов на западно‒сибирской железной дороге // Вестник Сибирского государственного университета путей сообщения. 2015. № 3. С.13–16.
  14. 14. Филиппов М.А., Макаров А.В., Шешуков О.Ю., Шевченко О.И., Метелкин А.А. Износ и износостойкие материалы: учебное пособие для студентов вуза, обучающихся по направлениям подготовки 22.03.01, 22.04.01 – Материаловедение и технология материалов; 22.03.02 – Металлургия / науч. ред. М. А. Гервасьев. Мин‒во науки и высш. образования РФ ; ФГАОУ ВО «Уральский федеральный университет им. первого Президента России Б. Н. Ельцина», Нижнетагил. технол. ин‒т (фил.). — Нижний Тагил: НТИ (филиал) УрФУ. 2019. 372 с.
  15. 15. Chen J.H., Chen P.N., Lin C.M., Chang C.M., Chang Y.Y., Wu W. Microstructure and wear properties of multicomponent alloy cladding formed by gas tungsten arc welding (GTAW) // Surf. Coat. Technol. 2009. 203 (20–21). P.3231–3234.
  16. 16. Sethi A.K. Studies on hard surfacing of structural steel by gas thermal spraying process // Mater. Today: Proceedings. 2020. 21. P.1436–1440.
  17. 17. Furman E.L., Usoltsev E.A., Bakhteev I.S., Furman I.E., Shak A.V. Effect of laser heat treatment on structure and wear resistance of cobalt stellite // J. Phys.: Conf. Ser. 2019. 1396 (1). P. 12016.
  18. 18. Momin A.G., Khatri B.C., Chaudhari M., Shah V.U., Valaki J. Parameters for cladding using plasma transfer arc welding—a critical // Mater. Today: Proceedings. 2023. 77. P. 614–618.
  19. 19. Ulianitsky V.Y., Batraev I.S., Rybin D.K., Dudina D.V., Korchagin M.A., Gavrilov A.I., Ukhina A.V., Samodurova M.N., Trofimov E.A. FeCoNiCu alloys obtained by detonation spraying and spark plasma sintering of high‒energy ball‒milled powders // Journal of thermal spray technology. 2022. 31 (4). P.1067–1075.
  20. 20. Ulianitsky V.Y., Rybin D.K., Dudina D.V., Ukhina A.V., Bokhonov B.B., Samodurova M.N., Trofimov E.A., Structure and composition of Fe–Co–Ni and Fe–Co–Ni–Cu coatings obtained by detonation spraying of powder mixtures // Materials Letters. 2021. 290. P. 129498.
  21. 21. Гельчинский Б.Р., Балякин И.А., Юрьев А.А., Ремпель А.А. Высокоэнтропийные сплавы: исследование свойств и перспективы применения в качестве защитных покрытий // Успехи химии. 2022. 91 (6). RCR5023.
  22. 22. Junjie G., Yan L., Wei W., Yongxin W., Zheng C. Chemical ordering enhancing mechanical properties of Nb25Ti35V5Zr35Alx refractory high‒entropy alloys. // Journal of Alloys and Compounds. 2025. 1017. 178990.
  23. 23. Junjie G., Wenji L., Yan L., Shilong L., Yongxin W., Zheng C. A single‒phase Nb25Ti35V5Zr35 refractory high‒entropy alloy with excellent strength‒ductility synergy // Journal of Alloys and Compounds, 2024. 1006. 176290.
  24. 24. Brodie J., Wang J., Couzinié J. P., Heczko M., Mazánová V., Mills M. J., Ghazisaeidi M. Stability of the B2 phase in refractory high entropy alloys containing aluminum // Acta Materialia. 2024. 1006. 119745.
  25. 25. Hao W., Weiping C., Zhiqiang F., Chenliang C., Zhao T., Zhenfei J., Haiming W. Lightweight Ti‒Zr‒Nb‒Al‒V refractory high‒entropy alloys with superior strength‒ductility synergy and corrosion resistance // International Journal of Refractory Metals and Hard Materials. 2023. 116. 106331.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library