RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

EVALUATION OF THE POSSIBILITY OF FORMATION OF LOW-MELTING HIGH-ENTROPY ALLOYS OF THE AL-ZN-BI-PB-SN-IN-GA-SB SYSTEM

PII
S30345715S0235010625050085-1
DOI
10.7868/S3034571525050085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
507-521
Abstract
Solders with a low melting point are necessary to solve the problem of integration of microcircuits and the reliability of their packaging, as well as to reduce thermal loads. To develop the next generation of electronic components, it is necessary to develop technologies for producing low-temperature compounds. This problem can be solved by creating solders, including those made of high-entropy alloys, differing in that they are characterized by the formation of solid solutions. These materials must be resistant to fatigue loads, exhibit plasticity, and adhere to other metallic materials. To reduce their toxicity, it is necessary to eliminate lead, which is usually found in solders. This paper presents the results of calculations of melting temperature, thermal conductivity, size factor δ, generalized thermodynamic parameter Ω, electronegativity, valence electron concentration, enthalpy, entropy, Gibb’s energy of mixing and other properties and parameters for 56 variants of five-component alloys of equiatomic composition from low-melting elements: Al, Zn, Bi, Pb, Sn, In, Ga and Sb, including, lead. The HEAPS program was used for the calculation, taking into account the inaccuracy in this program of the melting temperatures of tin, antimony, and indium, which differ from the observed ones. The VEC values for In, Sn, and Sb have been clarified. Based on the analysis of the calculated data, the compositions of potentially high-entropy alloys (HES) have been identified. It is shown that all alloys containing lead, as well as GaBiZnSnIn, GaBiZnSbIn, and AlGaBiZnIn alloys, do not satisfy the values of the δ parameter. They can form multiphase solid solutions, intermetallic compounds (IMC), and bulk-amorphous metallic glasses. The remaining variants of lead-free HEA-solders satisfy most parameters and can form solid solutions, with only AlGaZnSnSb being single-phase, and all others being multiphase solid solutions. The accumulated relatively large array of experimental and theoretical data can provide clarification of the criteria for the formation of the structure and properties of lead-free wind farms, which are in demand in practice.
Keywords
высокоэнтропийные сплавы (BЭC) легкоплавкие элементы неупорядоченные твердые растворы полуэмпирические параметры
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Zhang Y. High-entropy materials: a brief introduction. Singapore: Springer Nature. 2019. https://doi.org/10.1007/978-981-13-8526-1
  2. 2. Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P. High-entropy alloys. Amsterdam: Elsevier. 2019. https://doi.org/10.1016/C2017-0-03317-7
  3. 3. Yeh J.-W. High-entropy multielement alloys. Patent US. no. US 20020159914 A1. 2002.
  4. 4. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes // Adv. Eng. Mater. 2004. 6. P. 299–303. https://doi.org/10.1002/adem.200300567
  5. 5. Багаев А., Рукурев А., Иванов И., Юргин А., Багаев И. Обзор исследований сплавов, разработанных на основе энтропийного подхода // Обработка металлов. 2021. 23 (2). С. 116–146. https://doi.org/10.17212/1994-6309-2021-23.2-116-146
  6. 6. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. 2020. 121 (8). С. 807–841. https://doi.org/10.31857/S0015323020080094
  7. 7. Гельчинский Б.Р., Балкин И.А., Юрьев А.А., Ремпель А.А. Высокоэнтропийные сплавы: исследование свойств и перспективы применения в качестве защитных покрытий // Успехи химии. 2022. 91 (6). RCR5023. https://doi.org/https://doi.org/10.1070/RCR5023
  8. 8. Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys // Science China Materials. 2018. 61 (1). P. 2–22. https://doi.org/10.1007/s40843-017-9195-8
  9. 9. Упоров С.А., Эстемирова С.Х., Стерхов Е.В., Зайцева П.В., Скрыльник М.Ю., Шуняев К.Ю., Ремпель А.А. Особенности кристаллизации, структуры и термической стабильности высокоэнтропийных сплавов GdTbDyHoSc и GdTbDyHoY // Расплавы. 2022. 5. C. 443–453. https://doi.org/10.31857/S0235010622050097
  10. 10. Feuerbacher M., Lienig T., Thomas C. A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system // Scripta Materialia. 2018. 152. P.40–43. https://doi.org/10.1016/J.SCRIPTAMAT.2018.04.009
  11. 11. Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys // Intermetallics. 2011. 19 (5). P. 698–706. https://doi.org/10.1016/j.internet.2011.01.004
  12. 12. Осинцев К.А., Громов В.Е., Коновалов С.В., Иванов Ю.Ф., Панченко И.А. Высокоэнтропийные сплавы: структура, механические свойства, механизмы деформации и применение // Известия вузов. Черная металлургия. 2021. 64 (4). C. 249–258. https://doi.org/10.17073/0368-0797-2021-4-249-258
  13. 13. Трофименко Н.Н., Ефимонкин И.Ю., Большакova А.Н. Проблемы создания и перспективы использования жаропрочных высокоэнтропийных сплавов // Авиационные материалы и технологии. 2018. 5. C. 3–8. https://doi.org/10.18577/2071-9140-2018-0-2-3-8
  14. 14. Винник Д.А., Трофимов Е.А., Живулин В.Е., Зайцева О.В., Стариков А.Ю., Жильцова Т.А., Савина Ю.Д., Гудкова С.А., Жеребцов Д.А., Попова Д.А. Образование высокоэнтропийных октаэдрических кристаллов в многокомпонентных оксидных системах // Вестник ЮУрГУ. Серия: Химия. 2019. 11(3). C. 32–39. https://doi.org/10.14529/chem190303
  15. 15. Gromov V.E., Ivanov Yu.F., Semin A.P., Panin S.V., Borovskii S.V., Petrikova E.A., Zhang P., Serebryakova A.A. Structure and Deformation Behavior of a High-Entropy AlCoCrFeNiMn Alloy Ribbon //Russ. Metall. 2024. 2024. P. 1064–1070. https://doi.org/10.1134/S0036029524702021
  16. 16. Liu Y., Pu L., Yang Y., He Q., Zhou Z., Tan C., Zhao X., Zhang Q., Tu K.N. A high-entropy alloy as very low melting point solder for advanced electronic packaging // Materials Today Advances. September 2020. 7:100101. https://doi.org/10.1016/j.mtadv.2020.100101
  17. 17. Чикова О.А., Ильин В.Ю., Цепелев В.С., Вьюхин В.В. Вязкость высокоэнтропийных расплавов системы Cu-Sn-Bi-Pb-Ga // Неорганические материалы. 2016. 52(5). C. 564–569. https://doi.org/10.7868/S0002337X1605002X
  18. 18. Чикова О.А., Ильин В.Ю., Цепелев В.С., Вьюхин В.В. Вязкость высокоэнтропийных расплавов системы Cu-Sn-Bi-Pb-Ga // Расплавы. 2015. 1. C. 3–37.
  19. 19. Chikova O.A., Shmakova K.Yu., Tsepelev V.S. Measurement of the Phase Equilibrium Temperatures of High-Entropy Metallic Alloys by a Viscometric Method // Russian Metallurgy (Metally). 2016. 3. P.218–222. https://doi.org/10.1134/S003602951603006X
  20. 20. Вьюхин В.В., Чикова О.А., Цепелев В.С. Поверхностное натяжение жидких высокоэнтропийных эквиатомных сплавов системы Cu-Sn-Bi-In-Pb // Журнал физической химии. 2017. 91 (4), С. 582–585. https://doi.org/10.7868/S0044453717040343
  21. 21. Шепелевич В.Г., Гусакова О.В. Сплавы системы Sn-Zn-Ga для бессвинцовой пайки, полученные высокоскоростным затвердеванием // Журнал Белорусского государственного университета. Физика. 2020. 2. С. 50–61. https://doi.org/10.33581/2520-2243-2020-2-50-61
  22. 22. Гусакова О.В., Шепелевич. В.Г. Сплавы системы Sn-Zn-Bi-Ga для бессвинцовой пайки, полученные высокоскоростным затвердеванием // Журнал Белорусского государственного университета. Экология. 2020. 4. С. 79–85. https://doi.org/10.46646/2521-683X/2020-4-79–85
  23. 23. Cheng, S., Huang, C.-M., & Pecht, M. (2017). A review of lead-free solders for electronics applications // Microelectronics Reliability. 75. P. 77–95. https://doi.org/10.1016/j.microrel.2017.06.016
  24. 24. Sidorov V., Drápala J., Uporov S., Sabirzyanov A., Popel P., Kurochkin A., Grushevskij K. Some physical properties of Al–Sn–Zn melts // EPJ Web of Conferences. 2011. 01022. https://doi.org/10.1051/epjconf/20111501022
  25. 25. Bharath Krupa Teja M., Sharma A., Das S., Das K. A review on nanodispersed lead-free solders in electronics: synthesis, microstructure and intermetallic growth characteristics // J. Mater. Sci. 2022. 57, 8597–8633. https://doi.org/10.1007/s10853-022-07187-8
  26. 26. Чикова О.А., Цепелев В.С., Вьюхин В.В., Шмакова К.Ю. Расслоение и условия кристаллизации расплава Cu–Sn–In–Bi–Cd эквиатомного состава // Расплавы. 2015. 3. С.27–31.
  27. 27. Zhou Kaiyao, Tang Zhongyi, Lu Yiping, Wang Tongmin, Wang Haipeng, Li Tingju. Composition, Microstructure, Phase Constitution and Fundamental Physicochemical Properties of Low-Melting-Point Multi-Component Eutectic Alloys [J] // J. Mater. Sci. Technol. 2017. 33(2). P. 131–154.
  28. 28. Qiao J., Mao X., Tu K. -N., Liu Y. Microstructure and Intermetallic Growth Characteristics of Sn-Bi-In-xGa Quaternary Low Melting Point Solders // 2024 International Conference on Electronics Packaging (ICEP). Toyama, Japan. 2024. P. 13–14. https://doi.org/10.23919/ICEP61562.2024.10535549
  29. 29. Wu G., Shen J., Muhammad K. F., Zhou D., Wong Y. H., Si Z. Microstructure and mechanical properties of Cu/In-Zn-Sn-Bi/Cu joints bonded with high-entropy alloy solder at ultra-low temperature // J Mater Sci: Mater Electron. 2025. 36. 926. https://doi.org/10.1007/s10854-025-14903-y
  30. 30. Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys//Adv. Eng. Mater. 2008. 10(6). P. 534–538. https://doi.org/10.1002/adem.200700240
  31. 31. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. Design of high entropy alloys: A single-parameter thermodynamic rule // Scr. Mater. 2015. 104. P. 53–55. https://doi.org/10.1016/j.scriptamat.2015.03.023
  32. 32. Troparevsky M.C., Morris J.R., Kent P.R.C., Lupini A.R., Stocks G.M. Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys // Phys. Rev. X. 5. 2015. 011041. https://doi.org/10.1103/PhysRevX.5.011041
  33. 33. X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys // Material Chemistry and Physics. 2012. 132. P. 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
  34. 34. Guo S., Hu Q., Ng C., Liu C. T. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase // Intermetallics. 2013. 41. P. 96–103. https://doi.org/10.1016/j.internet.2013.05.002
  35. 35. Wang Z., Huang Y., Yang Y., Wang J., Liu C. T. Atomic-size effect and solid solubility of multicomponent alloys // Scripta Materialia. 2014. 94. P. 28–31. https://doi.org/10.1016/j.scriptamat.2014.09.010
  36. 36. Poletti M.G., Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems // Acta Materialia. 2014. 75. P. 297–306. https://doi.org/10.1016/j.actamat.2014.04.033
  37. 37. Юм-Розери B. Введение в физическое материаловедение: пер. с англ. / Вильям Юм-Розери; пер. В.М. Глазов, С.Н. Горин. – Москва: Металлургия, 1965. 203 с.
  38. 38. Zeng Y., Man M., Bai K., Zhang Y.-W. Revealing high-fidelity phase selection rules for high entropy alloys: A combined CALPHAD and machine learning study // Mater. Des. 2021. 202. 109532. https://doi.org/10.1016/j.matdes.2021.109532
  39. 39. Miedema A.R. On the heat of formation of solid alloys (II) // J. Less-Common Met. 1976. 46(1), P. 67–83. https://doi.org/10.1016/0022-5088 (76)90180-6
  40. 40. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys // Progress in Mater. Sci. 2014. 61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
  41. 41. Singh A.K., Kumar N., Dwivedi A., Subramaniam A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys // Intermetallics. 2014. 53. P. 112–119. https://doi.org/10.1016/j.internet.2014.04.019
  42. 42. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. Design of high entropy alloys: A single-parameter thermodynamic rule // Scr. Mater. 2015. 104. P. 53–55. https://doi.org/10.1016/j.scriptamat.2015.03.023
  43. 43. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. The generalized thermodynamic rule for phase selection in multicomponent alloys // Intermetallics. 2015. 59. P. 75–80. https://doi.org/10.1016/j.internet.2014.12.011
  44. 44. Martin P., Madrid-Cortes C.E., Cáceres C., Araya N., Aguilar C., Cabrera J.M. HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters” // Comp. Phys. Commun. 2022. 278. 108398. https://doi.org/10.1016/j.cpc.2022.108398
  45. 45. Yokokawa H. Tables of thermodynamic properties of inorganic compounds // Journal of the National Chemical Laboratory for Industry, Tsukuba Ibaraki 305, Japan. 1988. 83. P. 27–118.
  46. 46. Barin I., Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springer-Verlag. 1973. 1073 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library